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1. Introduction and motivations

Since the advent of exact non-perturbative results in four dimensional supersymmetric

gauge theories [1], an important line of research is to try to obtain microscopic derivations,

from first principles, of the proposed solutions. In the case of N = 2 supersymmetry,

one needs to compute instanton contributions for any value of the topological charge and

then to sum up the resulting infinite series. Carrying off this project required many years

of developments in instanton technology [2 – 4], culminating in Nekrasov’s work [5, 6].

Excellent reviews exist on the subject [7].

A major remaining challenge is to apply Nekrasov’s technology to the case of N = 1

gauge theories. Very little work has been done in this subject, with the notable exception

of [8]. The main goals are, for example, to obtain a microscopic non-perturbative derivation

of the Dijkgraaf-Vafa matrix model approach [9] and of the generalized Konishi anomaly

equations [10]. Our aim in the present note is to make the first step in this direction,

by explaining in details how and why an instanton analysis can lead to a full microscopic

derivation of exact results in N = 1 gauge theories, in spite of the fact that typical vacua

are strongly coupled. We are going to derive a microscopic quantum superpotential Wmic

which has two fundamental properties. First, it can be computed exactly in the instanton

approximation, and thus Nekrasov’s technology does apply. Second, the solution of the

– 1 –



J
H
E
P
1
0
(
2
0
0
7
)
0
6
5

variational problem dWmic = 0 yields all the quantum vacua of the N = 1 theory, including

the strongly coupled confining vacua. Of course, at any finite order in the instanton

expansion, Wmic can only describe the vacua that can be made arbitrarily weakly coupled

by adjusting the parameters. The unbroken gauge group in these vacua has only U(1)

factors. However, if we use the exact formula for Wmic, then we find all the other vacua as

well, with non-abelian unbroken gauge groups.

We focus on the well-studied example of the N = 1 theory with U(N) gauge group, an

adjoint chiral superfield X and an arbitrary polynomial tree-level superpotential TrW (X),

with

W ′(z) =
d

∑

k=0

gkz
k = gd

d
∏

i=1

(z − wi) . (1.1)

In this theory, the classical vacua are labeled as |Ni〉, with unbroken gauge group U(N1)×

· · ·×U(Nd). The integer Ni is equal to the number of eigenvalues of X that are equal to wi.

This is the simplest non-trivial example for the Dijkgraaf-Vafa theory [9], and it displays

all the essential features of the problem. It is straightforward to generalize our analysis to

other cases.

The plan of the paper is as follows. In section 2, we briefly discuss different types

of quantum effective superpotentials, in order to emphasize the special conceptual rôle

played by Wmic. In section 3, we present the derivation of Wmic. In section 4, we study

the stationary points of Wmic and show that the set of solutions coincide with the full set

of quantum vacua of the theory. This provides a full microscopic derivation of the gauge

theory expectation values 〈Tr Xk〉 in any vacuum of the theory, and they coincide with the

Dijkgraaf-Vafa prediction. We then conclude and explain future directions of research in

section 5.

The contribution of the present paper is mainly to set-up the right conceptual frame-

work to study the N = 1 theories from the microscopic point of view. A very important

aspect that we do not address is the calculation of the generalized glueball correlators

〈Tr W αWαXk〉, where W α is the chiral vector superfield. These correlators play a cen-

tral rôle in N = 1 gauge theories and in generalized anomaly equations [10]. Their study

from the microscopic point of view is very interesting but technically more involved, and a

detailed discussion will appear in forthcoming papers [11, 12].

2. On quantum effective superpotentials

The study of quantum effective superpotentials is an extremely useful point of view in

N = 1 gauge theories. There are different types of effective superpotentials one may wish

to use, and it is important to understand the technical and conceptual differences between

them. We give a brief review of this subject in the present section, in order to put into

perspective the properties of the microscopic superpotential Wmic.

2.1 On-shell effective superpotential

A central object is the quantum effective superpotential W
|0〉
low, defined by performing the
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path integral in a given supersymmetric vacuum |0〉,

e
i

R

d4x
“

2N Re
R

d2θ W
|0〉
low

(g,q)+D-terms
”

=

∫

|0〉
dµ eiS . (2.1)

In the above formula, dµ denotes the path integral measure (including the ghosts), S

is the super Yang-Mills action, g denotes collectively the couplings gk in the tree-level

superpotential (1.1), and q is the instanton factor,

q = Λ2N . (2.2)

The couplings g and q have been promoted to arbitrary background chiral superfields. The

main property of Wlow is to yield the on-shell expectation values of the chiral operators by

taking the derivative with respect to the coupling constants. If we introduce the operators

uk and glueball superfield S defined by

uk = TrXk , S = −
1

16π2N
Tr W αWα , (2.3)

we have

〈0|uk|0〉 = k
∂W

|0〉
low

∂gk−1

, 〈0|S|0〉 = q
∂W

|0〉
low

∂q
· (2.4)

The quantum superpotential W
|0〉
low is a fundamentally on-shell quantity and it depends

strongly on the particular vacuum in which it is computed. To be more precise, Wlow is

generically a multi-valued function of the microscopic couplings g and q, which means that

it can describe several vacua at the same time. For example, if W (z) = 1
2mz2, the theory

is essentially equivalent to the pure N = 1 gauge theory (after integrating out X). It is

well-known that this theory has N vacua, labeled as |k〉 for 0 ≤ k ≤ N − 1, and

W
|k〉
low = Nm q1/Ne2iπk/N . (2.5)

By doing the analytic continuations q → qe2iπ, we can smoothly interpolate between all

the vacua |k〉 for any k. This is possible because all these vacua are in the same confining

phase. It is then more natural to describe the physics in terms of a single multi-valued

superpotential W
|C)
low = Nmq1/N describing the confining phase |C), instead of using the

N possible values (2.5). More generally, when the gauge theory can be realized in several

phases, we can associate a multivalued superpotential W
|ϕ)
low for each phase |ϕ). The degree

of W
|ϕ)
low is equal to the number of vacua in the phase |ϕ), and we can interpolate between

these vacua by doing analytic continuations. Examples have been studied in [13].

A particularly interesting feature of the analytic continuations is that, in some exam-

ples, they can connect weakly coupled and strongly coupled vacua to each other. This

typically happens when fundamental flavors are introduced in the theory. In this case,

there is no fundamental distinction between the Higgs and the confining regime (they cor-

respond to the same phase of the theory), and it is possible to interpolate between the

Higgs and the confining vacua [14]. In the Higgs regime, the theory is arbitrarily weakly

coupled, and thus an instanton calculation is exact. The analytic continuation then allows
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to derive exact results in the strongly coupled confining regime, where a direct instanton

analysis is not correct (and in particular the small q expansion involves fractional powers

of q). This is essentially the philosophy that was used long ago by Shifman and Vainshtein

to derive the gluino condensate in pure N = 1 [15], and it is at the basis of a large fraction

of our understanding of N = 1 gauge theories.

So instantons can be used in some cases to derive exact results in strongly coupled

vacua. We want to know if this idea can be pushed further: is it always possible to analyse

arbitrary N = 1 vacua starting from an instanton analysis? This is clearly a necessary

condition to apply Nekrasov’s technology to N = 1 in general and to provide a microscopic

derivation of the exact results for this class of theories.

The main drawback of the analysis using Wlow is that only vacua in the same phase

can be connected to each other. The problem clearly comes from the fact that Wlow is an

on-shell quantity. On the other hand, a genuine microscopic quantum superpotential, that

can describe all the quantum vacua at the same time, must be an off-shell object. So we

need to construct off-shell quantum superpotentials.

2.2 Integrating in

A well-known and very easy way to do that is to “integrate in” some fields starting from

Wlow, which amounts to performing a Legendre transform with respect to the couplings.

For example, the glueball superpotential, which plays a prominent rôle in the Dijkgraaf-

Vafa approach, is defined as follows. First solve the second equation in (2.4) to express q

as a function q = q̂(S) of S. Then define

W
|0〉
glue(s;g, q) = W

|0〉
low

(

g, q̂(s)
)

+
(

ln q − ln q̂(s)
)

s . (2.6)

The superpotential Wglue(s) is an off-shell quantity because the variable s is arbitrary and

not necessarily equal to the expectation value of the operator S. By construction, this

expectation value in the vacuum |0〉 can be obtained by solving the “quantum equations

of motion”
∂W

|0〉
glue

∂s

(

s = 〈0|S|0〉
)

= 0 (2.7)

and we have

W
|0〉
low = W

|0〉
glue

(

s = 〈0|S|0〉
)

. (2.8)

A priori, Wglue depends on a vacuum |0〉, but it is easy to see that the equation (2.7)

actually has several solutions corresponding to different vacua of the same phase. For

example, in the case of (2.5), the glueball superpotential is the Veneziano-Yankielowicz

superpotential

Wglue(S) = S ln
[

q
(em

S

)N]

(2.9)

for which (2.7) and (2.8) yields all the vacua |k〉 for any k. In the case of the theory (1.1),

the vacua are labeled by the rank r of the low energy gauge group. For a given rank, the

unbroken gauge group is of the form U(N1)× · · · ×U(Nr), and the corresponding classical

vacua are of the form |N1, . . . , Nr, 0, . . . , 0〉. The glueball superpotential can be generalized
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in such vacua to a function of r variables si corresponding to the glueball fields of each

unbroken factor of the gauge group [9, 10]. It is well known that this generalized glueball

superpotential describes all the quantum vacua of a given rank. This is interesting because

there can be distinct phases of the theory at fixed r. Going off-shell has thus enabled to

describe distinct phases with a unique superpotential, albeit for a fixed value of r.

Another possibility is to integrate in the fields uk defined in (2.3). The resulting

superpotential WSC has been used in the literature in the context of the “strong coupling

approach” to N = 1, see for example [16]. It has the same qualitative features as the

glueball superpotential. It is defined for fixed values of the rank r, in which case r fields

(for example u1, . . . , ur) are integrated in. This constraint comes from the fact that at rank

r, only r of the uk are independent, and thus the Legendre transform of Wlow is well-defined

only with respect to r (or less) couplings gk. The quantum equations of motion

∂WSC

∂uk
= 0 , 1 ≤ k ≤ r , (2.10)

can then be shown to describe all the quantum vacua at fixed r, in a way that is equivalent

to the description in terms of the glueball superpotential [16].

So the superpotentials obtained by the integrating in procedure, like Wglue or WSC,

have nice off-shell features (they can describe several phases at the same time), but they are

not good enough for our purposes. First, they describe vacua at fixed values of r only, and

second it is only in the case r = N (the Coulomb vacuum, which can be made arbitrarily

weakly coupled) that they can be computed using an instanton analysis. We are now going

to propose a genuine microscopic off-shell superpotential, inspired by Nekrasov’s approach,

that will not have these drawbacks.

2.3 Microscopic off-shell superpotential

Instead of picking a given vacuum as in (2.1), we consider the euclidean path integral with

arbitrary boundary conditions at infinity for the chiral adjoint superfield X,

X∞ = diag(a1, . . . , aN ) = diag a . (2.11)

The eigenvalues ai can be viewed as external chiral superfields on which the path integral

depends. We shall use the notation ai (or a, to denote collectively all the ais) either for the

chiral superfield or for its lowest, scalar, component. The microscopic quantum effective

superpotential is then defined by

e−
R

d4x(2N Re
R

d2θ Wmic(a;g,q)+D-terms) =

∫

X∞=diag a

dµ e−SE . (2.12)

We are using explicitly the euclidean path integral, and SE is the euclidean super Yang-

Mills action. By X∞, we mean the value of X on the three-sphere at infinity in four

dimensional euclidean space.

Several comments on the formula (2.12) are in order. First of all, to be well-defined,

we need to introduce an ultraviolet regulator. Since we are going to deal with instantons, it

is convenient to use the non-commutative deformation of the theory in order to resolve the

– 5 –



J
H
E
P
1
0
(
2
0
0
7
)
0
6
5

Figure 1: The hyperelliptic curve C defined by (3.5) with the contours αi and βi used in the main

text. The open contours βi go from the point at infinity µ0 on the first sheet to the point at infinity

µ̂0 on the second sheet.

UV singularities of the instanton moduli space. The chiral observables we are interested

in actually do not depend on the non-commutative deformation parameter, which is real,

but introducing a non-zero deformation is necessary to obtain well-defined integrals over

the moduli space of instantons, with unambiguous definitions of the chiral operators like

the uk in (2.3) for any k. We also need to introduce an infrared regulator, to cut-off the

infrared divergence from the integration over space. We use (implicitly) the subtle infrared

regulator introduced by Nekrasov [5], which is equivalent to turning on some particular

supergravity background (the so-called Ω-background).

The reader might wonder why the path integral (2.12) can depend non-trivially on

the boundary conditions a when the infrared regulator is removed. Näıvely, one would

expect (2.12) to be projected on (2.1), or on a linear combination of contributions corre-

sponding to different vacua. The reason why this does not occur in the supersymmetric

theories is that the F -term sector is topological [17], and thus “long distance” can always

be pulled to “short distance” by rescaling the metric. The facts that chiral correlators do

not depend on the space-time insertion points, and that the integral over the instanton

moduli space can be localized on point-like instantons, are other facets of this property.

So we have a natural definition (2.12) for an off-shell microscopic superpotential.

Clearly, when |ai − aj | ≫ Λ, we can compute Wmic in a semiclassical approximation.

Since the corresponding instanton series has a finite radius of convergence, the semiclassi-

cal approximation is actually exact, and thus Wmic(a) for arbitrary a can be obtained from

the instanton calculation by analytic continuation.

We now need to understand how to compute Wmic, and then to show that the solutions

to the equations

∂Wmic

∂ai
= 0 (2.13)

are in one-to-one correspondence with the full set of quantum vacua of the theory (in

particular, that these equations describe the vacua for all the possible ranks r).

– 6 –
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3. Derivation of Wmic

3.1 Off-shell correlators and Wmic

From the definition (2.12), it follows that

k
∂Wmic

∂gk−1
=

〈

a
∣

∣Tr Xk
∣

∣a
〉

= uk(a,g, q) , (3.1)

q
∂Wmic

∂q
=

〈

a
∣

∣S
∣

∣a
〉

= S(a,g, q) , (3.2)

where uk(a,g, q) and S(a,g, q) are the off-shell expectation values of the operators (2.3)

for arbitrary values of the boundary conditions a. These functions can be computed using

the results of [5] and [8] as follows.

First, it is shown in [8] (equation (2.17)) that uk(a;g, q) actually does not depend on

g,

uk(a,g, q) = uk(a, q) . (3.3)

This result is a direct consequence of the localization techniques applied to the integrals

over the instanton moduli space. Using (3.3) and (3.1), we deduce that

Wmic(a,g, q) =
d

∑

k=0

gk
uk+1(a, q)

k + 1
+ f(a, q) =

〈

a
∣

∣Tr W (X)
∣

∣a
〉

+ f(a, q) , (3.4)

where f is an unknown function of a and q that does not depend on the couplings g.

When g = 0, the model reduces to the N = 2 gauge theory, and we can use the results

of [5]. Let us introduce the Seiberg-Witten curve

C : y2 = P (z)2 − 4q =
N
∏

i=1

(z − xi)
2 − 4q =

N
∏

i=1

(z − x−
i )(z − x+

i ) , (3.5)

where

P±(z) = P (z) ∓ 2q1/2 =
N
∏

i=1

(z − x±
i ) . (3.6)

The curve (3.5) is hyperelliptic of genus N − 1. Various contours and marked points on

the curve that we use later in the text are depicted in figure 1. The generating function

for the uk,

R(z;a, q) =
∑

k≥0

uk(a, q)

zk+1
, (3.7)

is given by [5, 6]

R(z;a, q) =
P ′(z)

√

P (z)2 − 4q
, (3.8)

where the parameters xi entering the curve (3.5) are determined in terms of the ais by the

equations

ai =
1

2iπ

∮

αi

zR(z) dz . (3.9)
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Equations (3.7), (3.8) and (3.9) together with (3.4) thus determine Wmic up to the function

f(a, q).

Let us note that the ai defined by (3.9) have been used in many instances in the

literature, because they are the natural variables entering into the low energy N = 2

effective action [1]. In particular, they have simple transformation properties under the

abelian electric-magnetic duality that plays a central rôle on the N = 2 moduli space.

However, presently, we use these variables in a different context. For us, their relevant

property is that they precisely coincide with the boundary conditions at infinity for the

scalar field X. This is a highly non-trivial result that follows from the explicit all-order

instanton calculations of [5, 6].

The q-dependence in f can be determined by using (3.2). A general formula for

S(a,g, q) has not appeared in the literature, but it can be easily deduced from the analysis

of [8]. We do not wish to enter into too much details here, because the analysis of glueball

operators Tr W αWαXk will be presented elsewhere [11, 12]. However, the case of the

operator S ∼ Tr W αWα is particularly simple. The basic formula for S is

S(a,g, q) =
1

2ǫ2

(

〈

a
∣

∣Tr X2 Tr W (X)
∣

∣a
〉

ǫ
−

〈

a
∣

∣Tr X2
∣

∣a
〉

ǫ

〈

a
∣

∣Tr W (X)
∣

∣a
〉

ǫ

)

, (3.10)

where the limit ǫ → 0 is understood. The expectation values 〈· · · 〉ǫ are taken for a non-

zero Ω-background, the parameter ǫ measuring the strength of this background.1 The

form of the formula (3.10) shows that, to get the glueball operator, the correlators must

be computed in the Ω-background including the corrections of order ǫ2. This is the basic

difficulty associated with the glueball operators and also the reason why the analysis of [6],

which is limited to the leading order in ǫ, cannot be used straightforwardly. However, in

the case of (3.10), there is a huge simplification due to the fact that

1

2ǫ2

(

〈

a
∣

∣Tr X2 Tr Xk
∣

∣a
〉

ǫ
−

〈

a
∣

∣ Tr X2
∣

∣a
〉

ǫ

〈

a
∣

∣Tr Xk
∣

∣a
〉

ǫ

)

= q
∂〈a|Tr Xk|a〉ǫ

∂q
, (3.11)

for any k ≥ 0. This equation was derived in [8] and is actually valid for any finite value of

ǫ. To give a hint of the origin of (3.11), let us note that the simplifications that allow to

derive such an elegant formula are very similar to the ones used in the all-order derivation

of the Matone’s relations [18] for the N = 2 prepotential [19]. Plugging (3.11) into (3.10),

we immediately obtain

S(a,g, q) = q
∂〈a|Tr W (X)|a〉ǫ

∂q
· (3.12)

Using (3.4) and (3.2), we see that f(a, q) = f(a) can depend only on a. We can thus

determine f by looking at the classical limit q → 0 for which it is clear that f = 0. Note

that the classical limit is perfectly smooth since Wmic is given by an instanton expansion

(this is unlike the classical limit for the glueball superpotential for example; for this reason,

Wglue can only be determined up to an arbitrary function of the glueball fields si by studying

the correlators [10]).

1The notation ~ instead of ǫ is often used in the literature, but we find this rather confusing in particular

because ǫ is naturally a complex parameter.
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Thus we have derived the fundamental formula

Wmic(a,g, q) =
〈

a
∣

∣Tr W (X)
∣

∣a
〉

. (3.13)

Using (3.7) and (3.8), this is equivalent to

Wmic(a,g, q) =
1

2iπ

∮

α
W (z)R(z;a, q) dz =

1

2iπ

∮

α

W (z)P ′(z)
√

P (z)2 − 4q
dz , (3.14)

where the contour α =
∑N

i=1 αi.

3.2 Using the U(1)R symmetry

As emphasized in [20] in the case of the glueball superpotential, R-symmetries put strong

constraints on the effective superpotential. We can actually rederive (3.13) by using the

U(1)R symmetry of our model. The charges of the superspace coordinates θα, instanton

factor q, chiral superfield X, vector superfield W α, boundary conditions a, couplings g and

superpotential Wmic are given in the following table,

θα q X W α a g Wmic

U(1)R 1 0 0 1 0 2 2 .
(3.15)

Performing an infinitesimal U(1)R transformation in the path integral (2.12), we obtain

2Wmic =
∑

k≥0

2gk
∂Wmic

∂gk

, (3.16)

and using (3.1) we find (3.13) again.

3.3 Relation with the strong coupling approach

The U(1)R symmetry can be used to constrain the various types of effective superpotentials

discussed previously. For example, it yields

W
|0〉
low =

〈

0
∣

∣ Tr W (X)
∣

∣0
〉

, (3.17)

and similarly a very useful constraint is obtained for the Dijkgraaf-Vafa glueball superpo-

tential as explained in [20]. Let us look in more details at the superpotentials WSC used in

the strong coupling approach. We denote by W
(r)
SC (u1, . . . , ur) the superpotential relevant

to the vacua of rank r. The fact that the variables uk have U(1)R charge zero makes the

W
(r)
SC somewhat similar to Wmic in the sense that the U(1)R symmetry also implies that

W
(r)
SC =

∑

k≥0

gk
∂W

(r)
SC

∂gk
=

⌊

r
∣

∣Tr W (X)
∣

∣r
⌋

. (3.18)

By ⌊r|Tr W (X)|r⌋, we mean that the expectation value is computed by taking into account

the constraints that correspond to being in a vacuum of rank r. Explicitly, the uk′ for k′ > r

are functions of the uk for 1 ≤ k ≤ r, and thus we have a formula of the form

W
(r)
SC (u1, . . . , ur) =

r
∑

k=1

gk
uk+1

k + 1
+

d+1
∑

k=r+1

gk
uk+1(u1, . . . , ur; q)

k + 1
· (3.19)
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At the classical level, it is straightforward to write down the constraints that define implic-

itly the functions uk(u1, . . . , ur; q = 0). For example, in the simplest r = 1 case for which

the matrix X is proportional to the identity, we have uk = N1−kuk
1. The main drawback of

the strong coupling approach is that the constraints are not known a priori at the quantum

level. They must be postulated based on some physical insights. The correct guess, that

originates from [1], is that the rank r vacua are characterized by the factorization condition

P (z)2 − 4q = HN−r(z)2R2r(z) , (3.20)

where HN−r and R2r are polynomials of degrees N−r and 2r respectively. This condition is

equivalent to the fact that the curve (3.5) degenerates to a genus r− 1 surface. Physically,

the N = 2 theory then has N − r massless monopoles which can condense when W is

turned on, higgsing the low energy gauge group from U(1)N to U(1)r.

Let us assume that d = N .2 Then there exists a rank r = N vacuum, the Coulomb

vacuum, corresponding to the unbroken gauge group U(1)N , described by the superpo-

tential W
(N)
SC . In the rank N case, the condition (3.20) is trivially satisfied: the variables

u1, . . . , uN are independent. It is convenient to use the set of variables x = (x1, . . . , xN )

which, according to (3.8), are related to the uk for small enough values of k by

uk =

N
∑

i=1

xk
i , 1 ≤ k ≤ 2N − 1 . (3.21)

Equations (3.19) and (3.8) then yield

W
(N)
SC (x) =

N
∑

i=1

W (xi) =
1

2iπ

∮

α

W (z)P ′(z)
√

P (z)2 − 4q
dz . (3.22)

Comparing with (3.14), we see that

Wmic(a) = W
(N)
SC (x) . (3.23)

This may look like a rather surprising formula, in view of the important conceptual differ-

ences between Wmic and W
(N)
SC . In particular, we have advertised that the solutions to the

equations (2.13) are all physical and describe the full set of vacua of the quantum theory.

On the other hand, the equations

∂W
(N)
SC

∂xi
= W ′(xi) = 0 (3.24)

describe a single vacuum, the weakly coupled Coulomb vacuum. This corresponds to the

solution of (3.24) for which all the xi are distinct and equal to the classical values, xi = wi

up to permutations. The solutions of (3.24) for which some of the xi coincide are not

physical. This is a trivial artefact of the variables x. To be fully rigorous, we should

2We could assume more generally that d ≥ N , but this does not bring any new interesting insight.
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follow the prescription from the integrating in procedure and use instead the variables

u1, . . . , uN (3.21). The equations

∂W
(N)
SC

∂uk
= 0 (3.25)

then have only one solution corresponding to (3.24) with all the xi distinct.

The fact that the set of stationary points strongly depends on the variables we use

is at the heart of the fundamental difference between Wmic and W
(N)
SC . There is a lot of

physics in the choice of the variables, x or a. This is one of the main point of the present

paper. The variables x enter when one considers the integrating in procedure, as in [16],

because of the relation (3.21). On the other hand, a microscopic point of view singles out

the variables a, as explained in 3.1.

4. The stationary points of Wmic

We are now going to solve the equations (2.13) and prove the claims made earlier in the

paper. We use a strategy based on the relationship between WSC and Wmic. This has the

advantage of exhibiting clearly the differences between the usual integrating in approach

and the present microscopic approach. Another derivation of the same results is also

possible using generalized Riemann bilinear relations. It will be presented in a forthcoming

paper [12].

Let us use (3.23) to rewrite (2.13) as

∂Wmic

∂ai
=

N
∑

i=1

Aij
∂W

(N)
SC

∂xj
= 0 , (4.1)

where we have introduced the matrix

Aij =
∂xj

∂ai
· (4.2)

The relation between the variables x and a is given explicitly by (3.9) and (3.8). The

equations (4.1) can be solved in two ways:

• Equation (3.24) is satisfied. This case corresponds to the Coulomb vacuum as dis-

cussed above.

• Equation (3.24) is not satisfied, but ∂W
(N)
SC /∂xi is an eigenvector of A of zero eigen-

value. This is possible only if the rank of the matrix A is r < N . We are going to

show that these solutions correspond precisely to the vacua of rank r < N .

4.1 Mathematical preliminaries

One-forms hi. Let us introduce the differential forms on the curve C (3.5)

hi = ψi(z) dz =
pi

y
dz , (4.3)
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where the pi(z) = zN−1+ · · · are monic polynomials of degree N −1 fixed by the conditions

1

2iπ

∮

αi

hj = δij . (4.4)

When the curve (3.5) is of genus N − 1 (i.e. it is not degenerate), the his form a canonical

basis of the vector space L (N) defined by the following constraint on the divisor of one-

forms on C,

L
(N) = {one-forms η | (η) + µ0 + µ̂0 ≥ 0} . (4.5)

This corresponds to one-forms that are holomorphic except possibly at infinity on either

sheet where they may have a simple pole. Note that the fact that the his are linearly

independent follows from (4.4) and the fact that they generate L (N) is a straightforward

consequence of the Riemann-Roch theorem.

It is useful to understand the one-forms hi also in the case of a degenerate curve of the

form (3.20). Let us study what happens when two branch cuts join together, for example

the branch cuts encircled by the contours α1 and α2. The genus of the curve then drops

from N − 1 to N − 2. In the notation of (3.5) and (3.6), this corresponds to x+
1 = x+

2 or

x−
1 = x−

2 (we cannot have x±
1 = x∓

2 because P+ and P− do not have common roots). Let

us choose for example x+
1 = x+

2 = b1, and

y2 = (z − b1)
2R2N−2(z) . (4.6)

Naively, the one-forms

hi =
pi

(z − b1)
√

R2N−2

dz (4.7)

then have poles at z = b1 on the first and second sheets. However, this does not happen,

because pj(b1) = 0 for all j. This follows from the constraints (4.4) for i = 1 or i = 2.

Indeed, if we had pj(b1) 6= 0, then the contour integrals would have a logarithmic divergence

in the degenerate limit. So we see that the hi remains holomorphic at finite z on (4.7),

with simple poles at infinity. In other words, the hi belongs to the space L (N−1) defined

as in (4.5) but on the curve

y2
N−1 = R2N−2(z) . (4.8)

Using (4.4), it follows that a canonical basis {h
(N−1)
i }2≤i≤N of L (N−1) is given by

h1 = h2 = h
(N−1)
2 , hi = h

(N−1)
i for i ≥ 3 , (4.9)

in the degenerate limit.

In the general case, (3.5) can degenerate to a genus r − 1 curve

y2
r = R2r(z) (4.10)

with

y = HN−r(z) yr =
N−r
∏

ℓ=1

(z − bℓ) yr . (4.11)
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The his then generate the vector space L (r) of one-forms on (4.10) that are holomorphic

at finite z with at most simple poles at infinity, but with relations like hi = hj depending

on which cuts have joined. In particular, we have

pi(bℓ) = 0 . (4.12)

Clearly, the rank of the system {hi} is given by

rank{hi}1≤i≤N = r . (4.13)

One-forms ηi. Let us introduce another basis of L (N) given by

ηi = φi(z) dz =
qi

y
dz , (4.14)

with

qi(z) =
∏

j 6=i

(z − xj) = −
∂P (z)

∂xi
· (4.15)

We assume that the xi are all distinct.

The one-forms ηi belong to L (r) only for r = N because of the 2(N − r) poles at

z = bℓ. Actually, even when the curve degenerates, the rank of the system {ηi} doesn’t

change,

rank{ηi}1≤i≤N = N . (4.16)

This is a consequence of the linear independence of the polynomials qi. Moreover, because

the qis form a basis for the polynomials of degree at most N − 1, there always exists a

matrix A such that3

pi(z) =
N

∑

j=1

Aij qj(z) . (4.17)

Using (4.3) and (4.14), we also have

ψi =

N
∑

j=1

Aij φj , hi =

N
∑

j=1

Aij ηj . (4.18)

The important point is that these relations are always valid, including in the cases where

the curve degenerate, because the qis are always linearly independent when the xi are all

distinct. Using (4.13) and (4.16), we also deduce that

rankA = r . (4.19)

Conversely, A of rank r clearly implies (4.13) which implies that the curve is of genus r−1.

3We show later that this definition is consistent with (4.1).
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Variations of the Seiberg-Witten differential. Consider now the Seiberg-Witten

differential

λSW = zR(z) dz . (4.20)

An important property of R(z) is that the solution to

F ′(z)

F (z)
= R(z) (4.21)

is a function F (z) defined on the Seiberg-Witten curve,

F (z;a, q) =
〈

a
∣

∣det(z − X)
∣

∣a
〉

=
1

2

(

P (z) +
√

P (z)2 − 4q
)

. (4.22)

Another useful identity is that
δF

F
=

δP

y
, (4.23)

where the variation δ is with respect to any parameter, for example the ais or the xis. To

compute δλSW, it is then convenient to write

λSW = − ln F dz + d(z lnF ) . (4.24)

We get

δλSW = −
δF

F
dz + d

(

z
δF

F

)

= −
δP

y
dz + d

(

z
δP

y

)

. (4.25)

Note that when the curve is non-degenerate, −δPdz/y ∈ L (N).

We can use the above results to compute the derivatives of λSW with respect to ai and

to xi. Using
1

2iπ

∮

αi

∂λSW

∂aj
= δij , (4.26)

which comes from taking the derivative of (3.9) with respect to aj , we get, in terms of (4.3),

−
1

y

∂P

∂ai
dz = hi , (4.27)

and thus
∂λSW

∂ai
= hi − d(zψi) = ψi dz − d(zψi) . (4.28)

Similarly, we get in terms of (4.14)

∂λSW

∂xi
= φi dz − d(zφi) . (4.29)

The tangent space to Σr. Let us define Σr to be the r-dimensional surface in x-space

on which the Seiberg-Witten curve degenerates to a genus r − 1 surface. Let us show that

the vectors

ei =

N
∑

j=1

Aij
∂

∂xj
(4.30)
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generate the tangent space to Σr. Due to (4.19), all we have to show is that ei(x) ∈ TxΣr.

The result is true essentially by construction, but let us see explicitly how it works.

The surface Σr is defined by the equation (3.20). Thus an arbitrary vector ∇ ∈ TxΣr

if and only if there exists polynomials HN−r and R2r such that

∇ ·
(

P (z)2 − 4q
)

= ∇ ·
(

HN−r(z)2R2r(z)
)

(4.31)

or equivalently

2P∇ · P = HN−r

(

2R2r∇ · HN−r + HN−r∇ · R2r

)

. (4.32)

Equation (3.20) implies that P and HN−r cannot have common roots. Thus (4.32) implies

that

∇ · P = HN−rQr−1 , (4.33)

2PQr−1 = 2R2r∇ · HN−r + HN−r∇ · R2r , (4.34)

for some degree r − 1 polynomial Qr−1. Conversely, assume that the vector ∇ is such

that (4.33) is satisfied. Then the equation (4.34) can be viewed as a constraint that

determines the polynomials ∇ ·HN−r and ∇ ·R2r (the equation is of degree N + r − 1, for

N + r unknown in ∇ · HN−r and ∇ · R2r).

So all we have to show is that the vectors (4.30) satisfy

ei · P = HN−rp
(r)
i =

N−r
∏

ℓ=1

(z − bℓ)p
(r)
i (4.35)

for some polynomials p
(r)
i of degrees r−1. This follows immediately from (4.15) and (4.17),

which imply that

ei · P = −pi(z) , (4.36)

and from (4.12). Finally, we have derived that

TxΣr = Vect
[

ei

]

1≤i≤N
. (4.37)

4.2 Solving dWmic = 0

Let us rewrite (3.14) in the form

Wmic =
1

2iπ

∮

α

W (z)

z
λSW . (4.38)

Using (4.28) and performing an integration by part, we get

∂Wmic

∂ai
=

1

2iπ

∮

α
W ′(z)ψi(z) dz . (4.39)

Similarly, from (3.22) and (4.29) we obtain

∂W
(N)
SC

∂xi
= W ′(xi) =

1

2iπ

∮

α
W ′(z)φi(z) dz . (4.40)
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The case of distinct xi. Let us assume for the moment that the xi are all distinct.

Then using (4.18), (4.39) and (4.40), we find (4.1). This equation is valid for any genus

r − 1 of the Seiberg-Witten curve, and can be written in terms of the vector fields (4.30)

as

ei · W
(N)
SC = 0 . (4.41)

The most general solution is labeled by r, and, for a given r, we find using (4.37) that it

corresponds to extrema of W
(N)
SC on the surface Σr. This is exactly the prescription used

in the strong coupling approach. Using (4.39) and (4.12), finding the extrema along Σr is

equivalent to imposing
∮

α

W ′(z)

yr
Qr−1 dz = 0 (4.42)

for any degree r − 1 polynomial Qr−1. Since the integral in (4.42) simply picks the simple

pole at infinity, this yields the condition

W ′

yr
= H̃d−r + O(1/zr+1) (4.43)

for some degree d − r polynomial H̃d−r, or

W ′ = H̃d−ryr + O(1/z) . (4.44)

Taking the square of (4.44), we find

W ′2 = H̃2
d−rR2r + O(zd−1) . (4.45)

Since both W ′2 and H̃2
d−rR2r are polynomials, this is equivalent to the existence of a degree

d − 1 polynomial ∆d−1 such that

W ′(z)2 − ∆d−1(z) = Hd−r(z)2R2r(z) . (4.46)

This is the usual factorization condition which, together with (3.20), yields the full solution

of the theory.

The case of xi = xj. It might happen that, for some particular values of the couplings,

some solutions correspond to xi = xj for a pair of distinct indices i and j. The previous

analysis doesn’t apply immediately in this case because for xi = xj , we have qi = qj,

thus the polynomials qk are no longer independent and the matrix A is not well-defined.

However, let us show that the formulas behave smoothly when we approach such a point.

Let us start from a case where xi and xj are very close to each other,

xi − xj = ǫ . (4.47)

Then qi − qj ∼ ǫ. Using (4.17), we see that in the limit ǫ → 0, the components Aki and

Akj diverge as

Aki ∼
bki

ǫ
∼ −Akj . (4.48)

On the other hand, the potentially diverging terms in (4.1) read

Aki
∂W

(N)
SC

∂xi
+ Akj

∂W
(N)
SC

∂xj
∼

bki

ǫ

(

W ′(xi) − W ′(xj)
)

∼ bkiW
′′(xi) , (4.49)

and thus the limit ǫ → 0 is smooth.
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5. Conclusion and outlook

We have shown that a microscopic approach to N = 1 gauge theories, based on Nekrasov’s

instanton technology, is possible. The stationary points of the microscopic superpotential

Wmic(a) yield all the quantum vacua, including the strongly coupled confining vacua, and

the result is consistent with the strong coupling approach or the Dijkgraaf-Vafa matrix

model. In particular, at the extrema of Wmic, the gauge theory resolvent (3.7), (3.8)

precisely coincide with the prediction of the matrix model. In other word, we have obtained

a full microscopic description of the expectation values 〈Tr Xk〉 in all the vacua of the

theory.

One of the most interesting potential application of the superpotential Wmic is the non-

perturbative study of the generalized Konishi anomaly equations. At the moment, only

a perturbative analysis of these equations has appeared [10], whereas the equations are

supposed to be valid at the non-perturbative level (see for example [21] for a discussion).

On general grounds, one may expect to have relations like

δWmic = A , (5.1)

where A is the anomaly polynomial and δ is a suitable variation. At the perturbative level,

the variations δ one must consider [10] act on the fields as δX ∼ Xn+1, δX ∼ W αWαXn+1,

and thus generate a sort of super Virasoro algebra. At the non-perturbative level, the

variations δ and associated algebra must be quantum corrected (this happens because

the transformations are non-linear). The corrections can in principle be studied starting

from (5.1).

To complete the above program, we need to study in full details the glueball operators

vk(a,g, q) = −
1

16π2

〈

a
∣

∣Tr W αWαXk
∣

∣a
〉

(5.2)

or the associated generating function

S(z;a,g, q) =
∑

k≥0

vk(a,g, q)

zk+1
· (5.3)

The function S(z;a,g, q) is not known for arbitrary values of the boundary conditions

a. As sketched in 3.1, it depends on subleading corrections in ǫ in Nekrasov’s formalism.

Computing this function, showing that it enters the anomaly equations (5.1) at the non-

perturbative level as derived in [10] in perturbation theory, and that it coincides with the

matrix model prediction at the extrema of Wmic will be a central topic in forthcoming

publications [11, 12].
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